110 research outputs found

    GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning

    Full text link
    Automatic transistor sizing is a challenging problem in circuit design due to the large design space, complex performance trade-offs, and fast technological advancements. Although there has been plenty of work on transistor sizing targeting on one circuit, limited research has been done on transferring the knowledge from one circuit to another to reduce the re-design overhead. In this paper, we present GCN-RL Circuit Designer, leveraging reinforcement learning (RL) to transfer the knowledge between different technology nodes and topologies. Moreover, inspired by the simple fact that circuit is a graph, we learn on the circuit topology representation with graph convolutional neural networks (GCN). The GCN-RL agent extracts features of the topology graph whose vertices are transistors, edges are wires. Our learning-based optimization consistently achieves the highest Figures of Merit (FoM) on four different circuits compared with conventional black-box optimization methods (Bayesian Optimization, Evolutionary Algorithms), random search, and human expert designs. Experiments on transfer learning between five technology nodes and two circuit topologies demonstrate that RL with transfer learning can achieve much higher FoMs than methods without knowledge transfer. Our transferable optimization method makes transistor sizing and design porting more effective and efficient.Comment: Accepted to the 57th Design Automation Conference (DAC 2020); 6 pages, 8 figure

    Hyperspectral Target Detection Based on Low-Rank Background Subspace Learning and Graph Laplacian Regularization

    Full text link
    Hyperspectral target detection is good at finding dim and small objects based on spectral characteristics. However, existing representation-based methods are hindered by the problem of the unknown background dictionary and insufficient utilization of spatial information. To address these issues, this paper proposes an efficient optimizing approach based on low-rank representation (LRR) and graph Laplacian regularization (GLR). Firstly, to obtain a complete and pure background dictionary, we propose a LRR-based background subspace learning method by jointly mining the low-dimensional structure of all pixels. Secondly, to fully exploit local spatial relationships and capture the underlying geometric structure, a local region-based GLR is employed to estimate the coefficients. Finally, the desired detection map is generated by computing the ratio of representation errors from binary hypothesis testing. The experiments conducted on two benchmark datasets validate the effectiveness and superiority of the approach. For reproduction, the accompanying code is available at https://github.com/shendb2022/LRBSL-GLR.Comment: 4 pages, 3 figures, 1 tabl

    Controlling single rare earth ion emission in an electro-optical nanocavity

    Full text link
    Rare earth emitters enable critical quantum resources including spin qubits, single photon sources, and quantum memories. Yet, probing of single ions remains challenging due to low emission rate of their intra-4f optical transitions. One feasible approach is through Purcell enhanced emission in optical cavities. The ability to modulate cavity-ion coupling in real time will further elevate the capacity of such systems. Here, we demonstrate direct control of single ion emission by embedding erbium dopants in an electro-optically active photonic crystal cavity patterned from thin-film lithium niobate. Purcell factor over 170 enables single ion detection, which is verified by second-order autocorrelation measurement. Dynamic control of emission rate is realized by leveraging electro-optic tuning of resonance frequency. Using this feature, storage and retrieval of single ion excitation is further demonstrated, without perturbing the emission characteristics. These results promise new opportunities for controllable single photon sources and efficient spin-photon interfaces

    Cultivation of Scenedesmus dimorphus for C/N/P removal and lipid production

    Get PDF
    Background: CO2 emission,water pollution and petroleumshortage are the issues comingwith the development of industry. A cost effective system was constructed to fix the CO2 in flue gas (15% CO2), remove nitrogen and phosphorus from manure wastewater and produce biofuels at the same time. The significant cultivation conditions were selected by Plackett\u2013Burman design, and then optimized with central composite design. Results: Optimum culture condition was predicted at light intensity of 238 \u3bcmol\ub7m-2\ub7s-1, TN of 152 mg\ub7L-1, inoculum density of 0.3 g\ub7L-1, under which the measured CO2 fixation rate, total nitrogen and phosphorus removing rate, and lipid content were 638.13 mg\ub7L-1\ub7d-1, 88.16%, 73.98% and 11.9%, respectively. The lipid content was then enhanced to 24.2% by a nitrogen starvation strategy. Conclusion: A cultivation strategy was suggested to achieve effective C/N/P removal from flue gas and manure wastewater, and meanwhile obtained high lipid content from microalgal biomass

    MiliPoint: A Point Cloud Dataset for mmWave Radar

    Full text link
    Millimetre-wave (mmWave) radar has emerged as an attractive and cost-effective alternative for human activity sensing compared to traditional camera-based systems. mmWave radars are also non-intrusive, providing better protection for user privacy. However, as a Radio Frequency (RF) based technology, mmWave radars rely on capturing reflected signals from objects, making them more prone to noise compared to cameras. This raises an intriguing question for the deep learning community: Can we develop more effective point set-based deep learning methods for such attractive sensors? To answer this question, our work, termed MiliPoint, delves into this idea by providing a large-scale, open dataset for the community to explore how mmWave radars can be utilised for human activity recognition. Moreover, MiliPoint stands out as it is larger in size than existing datasets, has more diverse human actions represented, and encompasses all three key tasks in human activity recognition. We have also established a range of point-based deep neural networks such as DGCNN, PointNet++ and PointTransformer, on MiliPoint, which can serve to set the ground baseline for further development

    An Adaptive Resilience Testing Framework for Microservice Systems

    Full text link
    Resilience testing, which measures the ability to minimize service degradation caused by unexpected failures, is crucial for microservice systems. The current practice for resilience testing relies on manually defining rules for different microservice systems. Due to the diverse business logic of microservices, there are no one-size-fits-all microservice resilience testing rules. As the quantity and dynamic of microservices and failures largely increase, manual configuration exhibits its scalability and adaptivity issues. To overcome the two issues, we empirically compare the impacts of common failures in the resilient and unresilient deployments of a benchmark microservice system. Our study demonstrates that the resilient deployment can block the propagation of degradation from system performance metrics (e.g., memory usage) to business metrics (e.g., response latency). In this paper, we propose AVERT, the first AdaptiVE Resilience Testing framework for microservice systems. AVERT first injects failures into microservices and collects available monitoring metrics. Then AVERT ranks all the monitoring metrics according to their contributions to the overall service degradation caused by the injected failures. Lastly, AVERT produces a resilience index by how much the degradation in system performance metrics propagates to the degradation in business metrics. The higher the degradation propagation, the lower the resilience of the microservice system. We evaluate AVERT on two open-source benchmark microservice systems. The experimental results show that AVERT can accurately and efficiently test the resilience of microservice systems

    Generative AI for Integrated Sensing and Communication: Insights from the Physical Layer Perspective

    Full text link
    As generative artificial intelligence (GAI) models continue to evolve, their generative capabilities are increasingly enhanced and being used extensively in content generation. Beyond this, GAI also excels in data modeling and analysis, benefitting wireless communication systems. In this article, we investigate applications of GAI in the physical layer and analyze its support for integrated sensing and communications (ISAC) systems. Specifically, we first provide an overview of GAI and ISAC, touching on GAI's potential support across multiple layers of ISAC. We then concentrate on the physical layer, investigating GAI's applications from various perspectives thoroughly, such as channel estimation, and demonstrate the value of these GAI-enhanced physical layer technologies for ISAC systems. In the case study, the proposed diffusion model-based method effectively estimates the signal direction of arrival under the near-field condition based on the uniform linear array, when antenna spacing surpassing half the wavelength. With a mean square error of 1.03 degrees, it confirms GAI's support for the physical layer in near-field sensing and communications

    Semantic Communications for Wireless Sensing: RIS-aided Encoding and Self-supervised Decoding

    Full text link
    Semantic communications can reduce the resource consumption by transmitting task-related semantic information extracted from source messages. However, when the source messages are utilized for various tasks, e.g., wireless sensing data for localization and activities detection, semantic communication technique is difficult to be implemented because of the increased processing complexity. In this paper, we propose the inverse semantic communications as a new paradigm. Instead of extracting semantic information from messages, we aim to encode the task-related source messages into a hyper-source message for data transmission or storage. Following this paradigm, we design an inverse semantic-aware wireless sensing framework with three algorithms for data sampling, reconfigurable intelligent surface (RIS)-aided encoding, and self-supervised decoding, respectively. Specifically, on the one hand, we propose a novel RIS hardware design for encoding several signal spectrums into one MetaSpectrum. To select the task-related signal spectrums for achieving efficient encoding, a semantic hash sampling method is introduced. On the other hand, we propose a self-supervised learning method for decoding the MetaSpectrums to obtain the original signal spectrums. Using the sensing data collected from real-world, we show that our framework can reduce the data volume by 95% compared to that before encoding, without affecting the accomplishment of sensing tasks. Moreover, compared with the typically used uniform sampling scheme, the proposed semantic hash sampling scheme can achieve 67% lower mean squared error in recovering the sensing parameters. In addition, experiment results demonstrate that the amplitude response matrix of the RIS enables the encryption of the sensing data

    Text Is All You Need: Learning Language Representations for Sequential Recommendation

    Full text link
    Sequential recommendation aims to model dynamic user behavior from historical interactions. Existing methods rely on either explicit item IDs or general textual features for sequence modeling to understand user preferences. While promising, these approaches still struggle to model cold-start items or transfer knowledge to new datasets. In this paper, we propose to model user preferences and item features as language representations that can be generalized to new items and datasets. To this end, we present a novel framework, named Recformer, which effectively learns language representations for sequential recommendation. Specifically, we propose to formulate an item as a "sentence" (word sequence) by flattening item key-value attributes described by text so that an item sequence for a user becomes a sequence of sentences. For recommendation, Recformer is trained to understand the "sentence" sequence and retrieve the next "sentence". To encode item sequences, we design a bi-directional Transformer similar to the model Longformer but with different embedding layers for sequential recommendation. For effective representation learning, we propose novel pretraining and finetuning methods which combine language understanding and recommendation tasks. Therefore, Recformer can effectively recommend the next item based on language representations. Extensive experiments conducted on six datasets demonstrate the effectiveness of Recformer for sequential recommendation, especially in low-resource and cold-start settings.Comment: accepted to KDD 202
    corecore